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Unit Overview 
Unit 1 explains how to calculate returns on financial assets, and considers 
various stylised facts (common statistical properties) concerning financial 
returns. The unit then analyses the distribution of returns, and, using 
examples, tests whether the various returns follow the normal distribution. 
Following that, you will study an analysis of time dependency, considering 
serial correlation in returns, serial correlation in volatility and asymmetry of 
volatility. An important finding is that time dependency can occur at more 
than one level (often time dependency exists in terms of the variance of the 
return but not the mean), and models of financial returns should take this 
into account. 

Learning outcomes 

When you have completed your study of this unit, the readings and the 
exercises, you will be able to: 

• define and compute the various measures of financial returns, 
including the simple return, gross return, multi-period returns and 
continuously compounded returns 

• calculate the sample moments of financial returns, including the 
skewness and kurtosis of financial returns  

• explain and discuss some of the stylised statistical properties of asset 
returns 

• analyse and appreciate the issue of time dependency in asset returns 
• analyse the linear dependence across financial assets. 

 Reading for Unit 1 

Eric Jondeau, Ser-Huang Poon and Michael Rockinger (2007) ‘Statistical 
properties of financial market data’. In Financial Modelling under Non-
Gaussian Distributions. London: Springer. pp. 7–32. 
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1.1 Introduction 
The main purpose of this unit is to describe and analyse some of the proper-
ties of returns on financial assets. Although financial analysts often observe 
prices on their screens such as stock prices, commodity prices, bond prices 
and exchange rates, the main objective of financial econometrics is to analyse 
financial returns. The focus on returns has many advantages. Returns are 
computed as the difference between prices over a particular horizon, so 
financial returns are stationary. This allows us to apply many of the stand-
ard calculation methods, summary statistics, and the standard econometric 
techniques you have studied before. Furthermore, returns can be easily 
compared across assets because they are scale-free. For instance, you could 
compare the annual return of an investment in stocks with an investment in 
a bond. Finally, as you will see in this unit, by focusing on financial returns 
it is possible to describe some common statistical properties of asset returns. 
These common features can be useful in modelling the time series properties 
of financial returns. 

This unit starts by illustrating how to measure financial returns, the main 
variable that we try to model in financial applications. There are various defini-
tions of returns such as simple returns, gross returns, multi-period returns, log 
returns, and so on. It is important from the start to be clear on how to compute 
the various types of returns. It is worth stressing that although financial returns 
are scale free, they should always be defined with respect to a particular time 
interval. This will be illustrated using examples.  

After defining financial returns, we present some stylised facts about the 
properties of financial returns. As noted by Cont (2001: 224), 

After all, why should properties of corn futures be similar to those of IBM 
shares or the Dollar/Yen exchange rate? Nevertheless, the result of more than 
half a century of empirical studies on financial time series indicates that this is 
the case if one examines their properties from a statistical point of view. The 
seemingly random variations of asset prices do share some quite nontrivial 
statistical properties. Such properties, common across a wide range of 
instruments, markets and time periods are called stylized empirical facts. 

In this unit, we focus on some of these properties, mainly the time depend-
ency properties, volatility clustering, asymmetric volatility, non-normality 
and cross-correlations across assets. But before doing so, it is important to 
refresh your memory about the various measures of moments of the distri-
bution of a random variable and how these can be computed for samples of 
financial returns. This has an additional advantage because it will allow you 
to learn how to derive these measures yourself. 

The reading for this unit will be based on Chapter 2 of the textbook by Eric 
Jondeau, Ser-Huang Poon and Michael Rockinger, Financial Modelling under 
Non-Gaussian Distributions. Although this reading is extracted from an 
advanced econometrics textbook, it sets out the issues in a clear and an 
insightful way. The outline of this unit follows very closely that of the 
reading. However, the unit will discuss some of the issues in more detail, 
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and will reproduce some of its results. It is important to note that many of 
the issues introduced in this unit will be revisited in other units and thus one 
of the purposes of this unit is to set the scene for the rest of the module.  

1.2 Calculation of Asset Returns 
Although in financial markets we mostly observe asset prices such as share 
prices or commodity prices, in empirical applications we often work with 
returns. One major reason for dealing with returns is that while prices are 
non-stationary (ie asset prices contain a unit root), asset returns are station-
ary. Since the module deals heavily with analysing and estimating asset 
return equations, it is worth spending some time defining returns and 
highlighting some of stylised facts about financial returns.  

1.2.1 Simple returns 

There are various definitions of returns. One such definition is the simple 
return. Let tP  be the price of an asset at time t and let 1tP−  be the price of the 
asset at time t − 1. Assuming that the financial asset does not pay any 
dividends, then the one-period (for instance, one-day, one-week, one-month 
or one-year) simple net return denoted as tR  is given by the following 
equation 

1

1

t t
t

t

P PR
P

−

−

−
=  (1.1) 

Writing  
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1 1

1t t t

t t

P P P
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−

− −

−
= −  

one can define the one-period simple gross return as 

1

1 t
t

t

PR
P−

+ =  (1.2) 

The left-hand side of the equation is also known as the discrete compound-
ing factor. This is the case since we could write equation (1.2) as 

( ) 11t t tP R P−= +  (1.3) 

It is important to stress that returns should always be defined with respect to a 
particular time interval. For instance, a statement such as ‘the investment 
achieved a return of 20%’ is meaningless unless we specify the horizon in 
which this return has been achieved. Thus, the above sentence should be 
qualified to include the time horizon, such as ‘the investment achieved a 
monthly return of 20%’ or ‘the investment achieved an annual return of 20%’. 
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 Review Question 1.1 

Consider a one-month investment in a BMW share. You bought the stock in period t − 1 
at $90 and sold it in period t for $100. Calculate the simple net return and the gross 
return of holding the investment over this one-month period. 

 

The one-month simple net return is  

100 90 11.11%
90tR −

= =  

The one-month simple gross return is given by 

1001 111.11%
90tR+ = =  

1.2.2 Multiperiod returns 

Suppose that you hold a financial asset from period t k−  to t, then the 
multiperiod simple net return denoted as ( )tR k  is given by the following 

( ) t t k
t

t k

P PR k
P

−

−

−
=  (1.4) 

For instance, assume that you hold the financial asset for two periods from 
2t −  to t then the two-period net simple return is given by 

( ) 2

2 2

2 1t t t
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t t
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− −
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= = −  

Writing 

1
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− − −

= ×  

the two-period simple net return can be written as 

( ) 1

1 2

2 1t t
t

t t
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−

− −

= × −  

which yields 

( ) ( ) ( )1
1

1 2

2 1 1 1 1t t
t t t

t t

P PR R R
P P

−
−

− −

= × − = + × + −  

or 

( ) ( ) ( )11 2 1 1t t tR R R −+ = + × +  

Notice that the simple two-period gross return is a geometric sum of the two 
one-period simple gross returns. Thus, adding two simple one-period gross 
returns does not yield the two-period return.  
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More generally, the k-period gross return can be written as 

( ) ( ) ( )1 1 1t t t kR k R R −+ = + × × +  (1.5) 

 Review Question 1.2 

Continue with the above example, but suppose now that you hold the asset for two 
months and in month t − 2 the price was $50. Calculate the two-month net return and 
gross return. 

 

The two-month net return is given by 

( ) 2

2

100 502 100%
50

t t
t

t

P PR
P

−

−

− −
= = =  

The two-month gross return is given by 

( ) ( ) ( )11 2 1 1t t tR R R −+ = + × +  

where 

1001 1.11
90tR+ = =  

1
1

2

901 1.80
50

t
t

t

PR
P

−
−

−

+ = = =  

Substituting the values in the above equation (without rounding) yields 

( )1 2 1.11 1.80 200%tR+ = × =  

1.2.3 Portfolio return 

The simple net return for a portfolio consisting of N assets, denoted as ,p tR , 

is just the weighted average of individual simple returns. Thus, 

, ,
1

N

p t i i t
i

R w R
=

=∑  (1.6) 

where iw  is the weight of asset i in the portfolio and N is the number of 
assets in the portfolio. This is an extremely useful property for simple 
returns, and thus when dealing with portfolio analysis, it is easier to calcu-
late simple returns.  

1.2.4 Log returns 

In this module we will base most of our examples on continuously com-
pounded returns. The continuously compounded one-period return (or log 
return) denoted as tr  is given by 

( ) 1
1

ln 1 ln ln lnt
t t t t

t

Pr R P P
P −

−

 
= + = = − 

 
 (1.7) 
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where ln is the natural log function. Another way to express the above 
function is as follows 

( )
1

exp t
t

t

Pr
P−

=  (1.8) 

The left-hand side of equation (1.8) refers to the continuously compounding 
factor since equation (1.8) can be written as 

( ) 1expt t tP r P−=  (1.9) 

1.2.5 Multiperiod log returns 

The main advantage of using log returns is that the multiperiod return is 
simply the sum of one-period returns. In other words, 

( )
1

0

k

t t j
j

r k r
−

−
=

=∑  (1.10) 

This is a very useful property, which is extremely helpful in practical appli-
cations, as you will see in the next exercise.  

 Review Question 1.3 

Table 1.1 contains monthly share prices (adjusted for splits and dividends) for Barclays 
Bank from December 2007 to December 2008 and the monthly log returns. The data were 
obtained from Yahoo! (nd accessed February 2019). Using equation (1.7), check that you 
can calculate the one-month log-returns. Using equation (1.10), check that you can 
calculate the annualised continuously compounded returns for 2008. 

Table 1.1 Monthly log return, Barclays Bank, December 2007–December 2008 

Date Share price Monthly log return 

December 2007 504  

January 2008 470 −0.069843573 
February 2008 477.25   0.015307768 

March 2008 453 −0.052148337 
April 2008 456.5   0.007696575 

May 2008 375 −0.196662674 

June 2008 291.5 −0.25188602 
July 2008 338   0.14800589 
August 2008 353   0.043422161 

September 2008 326.5 −0.078038108 

October 2008 178.9 −0.601602958 

November 2008 169.4 −0.054564208 

December 2008 153.4 −0.099213893 
Annualised continuously compounded return −1.189527379 

To calculate the annualised continuously compounded returns for 2008, you simply add 
the monthly log returns to obtain −1.1895. Alternatively, you can calculate the average  
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monthly return (−0.09913) and then multiply it by 12 to obtain the annualised continu-
ously compounded returns (−1.1895); in this example, this step might seem pointless 
(dividing by 12 observations and then multiplying by 12 months), but it is required if you 
do not have 12 observations.  

 

1.2.6 Real log returns 

So far we have only considered nominal returns. In some practical applications 
we may also be interested in real returns (ie nominal returns adjusted for the 
inflation rate). The log returns are quite useful in calculating real returns.  

Calculating the real return involves two steps. In the first step, you deflate 
the share price by the general price level (usually the Consumer Price Index, 
CPI). In the second step, you calculate the return using the same methods as 
applied above. As an example, consider tP  the price of the share at time t 
and tCPI  is the consumer price at time t. The real share price is given by  

Real t
t

t

PP
CPI

=  (1.11) 

The one-period simple real return is computed as 

1 1 1

1 1 1 1 1

1
Real Real

Real t t t t t t t
t Real

t t t t t t

P P P P P P CPIR
P CPI CPI CPI P CPI

− − −

− − − − −

 −
= = − ÷ = ÷ − 

 
 (1.12) 

The continuously compounded one-period real return denoted as Real
tr  is 

given by the following 

( )
1 1

ln 1 lnReal Real t t
t t

t t

P CPIr R
P CPI− −

 
= + = ÷ 

 
 (1.13) 

Using the log properties, equation (1.13) can be written as 

( ) ( )( ) ( ) ( )( )1 1ln ln ln lnReal
t t t t tr P P CPI CPI− −= − − −  (1.14) 

The first term on the right-hand side is simply the log return, while the 
second term is the one-period continuously compounded inflation rate, tπ  ie 
equation (1.14) can be written as 

Real
t t tr r π= −  (1.15) 

 Review Question 1.4 

Table 1.2 contains monthly data on the New York Stock Exchange Price Index and the 
monthly Consumer Price Index (CPI) for the US. Using equation (1.14), check that you can 
calculate the monthly real rate of return.  
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Table 1.2 New York Stock Exchange Price Index and CPI, December 2007–
December 2008 

Date 
NYSE  

Price Index tr  CPI tπ  Real
tr  

December 2007 9740.32  211.737   

January 2008 9126.16 −0.065129 212.495  0.0035735 −0.0687025 

February 2008 8962.46 −0.0181003 212.86  0.0017162 −0.0198165 

March 2008 8797.29 −0.018601 213.667  0.0037841 −0.0223851 
April 2008 9299.6  0.05552767 213.997  0.0015433  0.0539844 
May 2008 9401.08  0.01085319 215.044  0.0048807  0.0059725 

June 2008 8660.48 −0.0820544 217.034  0.0092114 −0.0912658 

July 2008 8438.64 −0.025949 218.61  0.0072353 −0.0331843 

August 2008 8382.08 −0.0067251 218.576 −0.0001555 −0.0065695 

September 2008 7532.8 −0.1068293 218.675  0.0004528 −0.1072821 

October 2008 6061.09 −0.2173772 216.889 −0.0082009 −0.2091763 

November 2008 5599.3 −0.0792481 213.263 −0.0168596 −0.0623885 
December 2008 5757.05  0.0277836 211.577 −0.0079371 0.0357207 

Annualised continuously compounded real return −0.5250928 

As can be seen from Table 1.2, the monthly real rate of return is simply the 
monthly log return minus the one month continuously compounded infla-
tion. To calculate the annualised real rate of return for 2008, you can simply 
add the real monthly log returns. 

1.2.7 Log portfolio return 

The main disadvantage of using log returns is that the log return of a portfo-
lio of assets cannot be written as the weighted average of individual log 
returns. In fact, the portfolio log return denoted as ,p tr  is given by 

( ), , , ,
1 1

ln 1 ln 1
N N

p t p t i i t i i t
i i

r R w R w r
= =

 = + = + ≠ 
 

∑ ∑  (1.16) 

This is the case because the log of a sum is different from the sum of logs. In 
your next reading the authors claim that this problem is usually considered 
minor in empirical applications. This is true to some extent, especially when 
returns are measured over short intervals of time. In such cases, 

, ,
1

N

p t i i t
i

r w r
=

≈∑  (1.17) 

However, it is not advisable to use this approximation, and when you need 
to construct portfolio returns, it is better to use simple returns. In this 
module we will be mainly examining the behaviour of asset returns over 
time, and not portfolio returns, so we will rely heavily on log returns. 
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 Reading 1.1 

Please now read Section 2.1 of the chapter by Jondeau, Poon and Rockinger. 

 Optional Reading 1.1 

If you are unsure about how to calculate any of the above returns, perhaps at this stage it 
would also be useful to revise the properties of logarithms. Section 1.5.6 of your key text, 
Introductory Econometrics for Finance, by Chris Brooks (pp. 14–16) provides a quick 
review of the properties of logarithms. You might also read the start of Section 2.7, 
Returns in financial modelling pp. 77–79 of Brooks, which covers simple returns, log 
returns, and log returns of a portfolio. 

1.3 Stylised Facts about Financial Returns 
Although different assets such as stocks, bonds or commodities behave 
differently and are unlikely to be affected by the same set of information or 
events, much empirical literature on financial time series has revealed that 
financial asset returns possess some common statistical properties. These 
properties are often referred to as stylised facts. In what follows, we choose 
the most important stylised facts as listed by Cont (2001: 224). 

1. Absence of autocorrelations: (linear) autocorrelations of asset returns 
are often insignificant, except for very small intraday time scales ( 20≅  
minutes) for which microstructure effects come into play. 

2. Heavy tails: the (unconditional) distribution of returns seems to 
display a power-law or Pareto-like tail, with a tail index which is 
finite, higher than two and less than five for most data sets studied. In 
particular, this excludes stable laws with infinite variance and the 
normal distribution. However the precise form of the tails is difficult 
to determine. 

3. Gain / loss asymmetry: one observes large drawdowns in stock prices 
and stock index values but not equally large upward movements. 

4. Aggregational Gaussianity: as one increases the time scale Δt over 
which returns are calculated, their distribution looks more and more 
like a normal distribution. In particular, the shape of the distribution is 
not the same at different time scales. 

5. Volatility clustering: different measures of volatility display a positive 
autocorrelation over several days, which quantifies the fact that high-
volatility events tend to cluster in time. 

6. Conditional heavy tails: even after correcting returns for volatility 
clustering (eg via GARCH-type models), the residual time series still 
exhibit heavy tails. However, the tails are less heavy than in the 
unconditional distribution of returns. 

7. Leverage effect: most measures of volatility of an asset are negatively 
correlated with the returns of that asset.  

Jondeau et al (2007) 
Section 2.1 ‘Definitions 
of returns’. Financial 
Modelling under Non-
Gaussian Distributions. 
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8. Volume / volatility correlation: trading volume is correlated with all 
measures of volatility. 

1.4 Distribution of Asset Returns 
In the rest of the module we will analyse some of these properties in detail, and 
discuss how different models try to incorporate these features. The next 
sections of this unit illustrate some of these stylised facts using data on stock 
market indexes. However, before doing so, it would be useful to refresh your 
memory about the moments of a random variable, and then show you how 
these can be used to illustrate the properties of financial returns. 

1.4.1 Moments of a random variable 

Denote by the random variable X the log return of a financial asset. You may 
recall from your previous studies that the cumulative distribution function 
for the random variable can be defined as 

( ) [ ] ( )Pr
x

XF X X x f u du
−∞

= ≤ = ∫  (1.18) 

where Xf  is the probability density function (pdf). The un-centred moments 
of the random variable X are defined as  

k k
k Xm E X x f dx

+∞

−∞

 = =  ∫  for k = 1, 2, … (1.19) 

Although the above equations seem complex, their interpretation is quite 
straightforward. When k = 1, you obtain the first un-centred moment of the 
random variable, which is simply the mean of the random variable ie  

[ ]1m E X µ= =  (1.20) 

The centred first moment equals zero. When k = 2, we can obtain the second 
centred moment of the random variable, which is simply the variance ie 

( )2 2
2m E X V X σ = = =   (1.21) 

When k = 3, we obtain the skewness of the random variable, and when k = 
4, we obtain the kurtosis of the series. The (standardised) skewness of the 
series, denoted as s, is defined as  

[ ]
3Xs Sk X E µ

σ
 − = =   
   

 (1.22) 

The (standardised) kurtosis of the series, denoted as κ, is defined as  

[ ]
4XKu X E µκ

σ
 − = =   
   

 (1.23) 
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The skewness and kurtosis of the series are important for understanding 
financial returns. Skewness measures the asymmetry of the distribution of 
financial returns. When it is positive, it indicates that large positive realisa-
tions of X are more likely. When it is negative, it indicates that large negative 
realisations of X are more likely. Kurtosis, on the other hand, measures the 
thickness of the tails of the distribution. In particular, it measures the tail 
thickness in relation to the normal distribution (for a normal distribution 
kurtosis equals 3, so excess kurtosis is measured by κ − 3). Remember from 
the above discussion that one of the stylised facts is that financial returns 
have heavy tails, and that these heavy tails persist even after correcting for 
volatility clustering.  

1.4.2 Empirical moments  

In practical application we need to consider empirical measures for the 
above moments. You will most likely know how to compute these moments 
already, but it is worth reviewing them very quickly. Consider a time series 
of realised asset returns tr , t = 1, …, T. The widely used measure of location 
is the sample mean, which is given by the following equation: 

1

1ˆ
T

t
t

r r
T

µ
=

= = ∑  (1.24) 

Variance is the most widely used measure for dispersion, and is given by the 
following equation 

( )22

1

1ˆ
1

T

t
t

r r
T

σ
=

= −
− ∑  (1.25) 

In financial applications the square root of the variance is often used to 
measure volatility. Another useful measure of dispersion is the mean abso-
lute deviation (MAD), which is given by 

1

1 T

t
t

MAD r r
T =

= −∑  (1.26) 

The sample skewness can be computed using the following equation 
3

1

ˆ 1 T
t

t

s r r
T σ=

− =  
 

∑  (1.27) 

The sample kurtosis can be computed using the following equation 
4

1

1ˆ
T

t

t

r r
T

κ
σ=

− =  
 

∑  (1.28) 

The above measures are known as summary statistics. Under the assump-
tion that financial returns are normal, we have the following asymptotic 
results 

( ) ( )2ˆ  ~ 0,T Nµ µ σ−  (1.29) 
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( ) ( )2 2 4ˆ  ~ 0,2T Nσ σ σ−  (1.30) 

( ) ̂ ~ 0,6T s N  (1.31) 

( ) ( )ˆ  3 ~ 0, 24T Nκ −  (1.32)  

In fact, based on the results in (1.31) and (1.32), one can derive a statistic to 
test the hypothesis of normality, known as the Jarque–Bera test, defined as 

( )22 ˆˆ 3
6 24

J T sB
κ −

= + 
  

 (1.33) 

The test is distributed asymptotically as ( )2 2χ  under the hypothesis that 

the distribution is normal. A large value of the J–B statistic implies that we 
can reject the null hypothesis that the returns are normally distributed.1  

1.4.3 Example – Empirical moments 

Let’s now use these measures to illustrate some of the properties of financial 
returns. The example concerns daily, weekly and monthly data for the 
Standard & Poor’s 500 stock price index from January 2000 to December 
2019. For each of the stock price index series we calculate the corresponding 
one-period log returns (daily log returns for daily data, weekly log returns 
for weekly data, and monthly log returns for monthly data). For each of the 
returns series, we calculate the mean, standard deviation, skewness and 
kurtosis, and the J–B statistic. The histograms of the returns are shown in the 
Figures below.  

For daily data, the mean of the daily log return is 0.016% and the standard 
deviation is 1.19%, which is quite high. The histogram for the daily returns is 
shown in Figure 1.1. 

Figure 1.1 Daily log returns, S&P 500 index 

 

 
1 It is important to stress that the J–B test applies to only large samples, as explained in your reading.  
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The maximum and minimum daily returns are 11.0% and −9.5%. The daily 
index return has high sample kurtosis of 11.64; this indicates the sample 
distribution of daily returns is more peaked and has fatter tails than a 
normal distribution (with the same mean and variance). The daily index 
return is negatively skewed, with sample skewness equal to −0.23. The J–B 
test statistic equals 15,706.07, (Prob. value 0.0000) and strongly rejects the 
null hypothesis of normality.  

For weekly data, the mean of the log return is 0.077% and the standard 
deviation is 2.40%. The maximum and minimum range is 11.4% to −20.0%. 
The weekly index return has a high sample kurtosis of 10.27. The weekly 
returns are also negatively skewed, with skewness equal to −0.88. Again, the 
J–B test strongly rejects the null hypothesis of normality, with calculated 
value 2,434.79 and Prob. value equal to 0.0000. The histogram of weekly 
returns is shown in Figure 1.2 

Figure 1.2 Weekly log returns, S&P 500 index 

 
Finally, we report data for monthly returns. The histogram is shown in 
Figure 1.3.  

Figure 1.3 Monthly log returns, S&P 500 index 
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The mean monthly return is 0.352%, and the standard deviation is 4.23%. The 
maximum and minimum monthly return are 10.2% and −18.6%. The monthly 
log return has a lower kurtosis of 4.58. This is expected for monthly data. The 
monthly returns still exhibit negative skewness, with skewness equal to −0.79. 
Again, the J–B test strongly rejects the null hypothesis of normality of returns, 
with calculated value 49.91 (Prob. value 0.0000). 

 Reading 1.2 

Please now read Section 2.2.1 to 2.2.3 from Jondeau, Poon and Rockinger. 

1.5 Time Dependency 
As noted above, one of the stylised facts is that autocorrelations of asset 
returns are often insignificant ie asset returns exhibit no time dependency. 
However, it is important to note that time dependency can occur at several 
levels. In what follows, we refer to three levels of dependency: Serial correla-
tion in returns, serial correlation in squared returns, and volatility asymmetry. 

1.5.1 Serial correlation in returns 

Here, we are interested in testing the null hypothesis that the first p returns 
are not serially correlated. You may remember from your other studies that 
a measure of autocorrelation of returns of order j is given by the following: 
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Unit 4 will use test statistics such as the Ljung–Box Q statistic to test the 
significance of autocorrelations, and will suggest ways to estimate models of 
financial returns. However, we will use this statistic in the example that 
follows, and it is calculated as  
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It is asymptotically distributed as 2χ  with p degrees of freedom, under the 
null hypothesis of no correlation. As discussed in the stylised facts, autocor-
relations of asset returns are often insignificant and hence there is little time 
dependency in asset returns. However, this stylised fact cannot be general-
ised. Depending on the time horizon being used, one could find weak 
evidence of serial correlation in some asset returns. 

1.5.2 Serial correlation in volatility 

To test for dependency in volatility, we need to construct models that gener-
ate time-varying volatility measures. ARCH, GARCH and their family of 
models do exactly that. In Unit 5, we will introduce these models as well as 
ways to test for serial dependence in volatility. To anticipate the discussion in 

Jondeau et al (2007) 
Sections 2.2.1 ‘Moments 
of a random variable’, 
2.2.2 ‘Empirical 
moments’ & 2.2.3 
‘Testing for normality’. 
Financial Modelling 
under Non-Gaussian 
Distributions. 
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Unit 5, we could use the Ljung–Box Q statistic to test for serial correlation in 
squared returns and absolute returns. Most empirical evidence suggests that 
there is a strong evidence of serial correlations in squared returns and abso-
lute returns, especially for daily and weekly data as shown in Table 2.4 of 
your reading. In other words, large returns of either sign tend to be followed 
by large returns of either sign or the volatility of returns tends to be serially 
correlated. This is often referred to in the literature as volatility clustering. 

1.5.3 Volatility asymmetry 

One important feature of financial returns is that volatility exhibits asymmet-
ric behaviour. In particular, there is wide empirical evidence that volatility is 
more affected by negative returns than positive returns. In Unit 5 we will 
show you how these ARCH and GARCH models can be modified to take 
asymmetric volatility into account. Table 2.5 of your reading shows parameter 
estimates of volatility asymmetry for the various stock market indexes. 

 Reading 1.3 

I would like you now to read Section 2.3 in Jondeau, Poon and Rockinger. Don’t worry if 
you don’t understand all of these equations. These will become clear in Units 4 and 5. 
The main lessons I want you take from this section are as follows. 

 Make sure your notes cover these issues clearly. 

 Time dependency can occur at more than one level, and for financial returns time 
dependency often occurs at the second moment (the variance) and not the first mo-
ment (the mean); 

 Therefore it is important to construct models of time varying volatility for financial 
returns, and devise statistics to test for the correlation at higher moments; 

 Volatility of financial returns may exhibit asymmetric behaviour and this needs to be 
accounted for in empirical models. 

 

1.5.4 Example – Serial correlation of returns 

Perhaps the best way to appreciate the issue of time dependency is to consider 
again the monthly log return of the S&P 500 index. The serial correlation at 
order 1 to 6 and the corresponding Ljung–Box Q statistic are given in Table 
1.3.  

Table 1.3 Monthly log returns, S&P 500 index 

Lag Autocorrelation Ljung-Box Q statistic Probability 

1 0.076 1.3900 0.2384 

2 −0.032 1.6331 0.4420 
3 0.089 3.5605 0.3130 
4 0.067 4.6492 0.3252 
5 0.073 5.9740 0.3088 

6 −0.096 8.2436 0.2208 

Jondeau et al (2007) 
Section 2.3 ‘Time 
dependency’. Financial 
Modelling under Non-
Gaussian Distributions. 
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In Unit 4, you will learn how to use such a table for diagnostic checking, but 
for now it is important to understand the intuition. As can be seen from this 
table, there is no evidence of serial correlation in the monthly log returns (the 
Prob. values are all greater than the 0.05 level). The Q statistic does not reject 
the null hypothesis of no serial correlation at the various lags.  

Now let’s consider the square of the returns and repeat the exercise. The 
results are shown in Table 1.4. As can be seen from this table, there is strong 
evidence of serial correlation in the squared returns. The implications of this 
will be studied in Unit 5. 

Table 1.4 Square of monthly returns, S&P 500 index  

Lag Autocorrelation Ljung-Box Q statistic Probability 

1 0.274 18.111 0.000 
2 0.102 20.630 0.000 
3 0.182 28.688 0.000 
4 0.268 46.243 0.000 
5 0.180 54.210 0.000 
6 0.123 57.932 0.000 

1.6 Linear Dependency across Asset Returns 
So far we have focused on some of the stylised facts about individual series 
of asset returns. In this section we shift the focus towards the dependence of 
returns across assets. As you may recall from your other studies, the widely 
used measure of dependence is the correlation coefficient (also known as 
Pearson’s correlation), which is given by the following equation 
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where ( ),Cov X Y  is the covariance between X and Y, V(X) is the variance of 

X, and V(Y) is the variance of Y. The correlation coefficient must lie between 
−1 and 1, with a zero value indicating no correlation between the two series. 
An estimator of the correlation coefficient is given by the following: 
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As you can see from Table 2.6 in your reading, the correlation between the 
various stock market indexes is positive, implying that stock indexes tend to 
move together. Another interesting observation is that the correlation tends 
to increase in turbulent times (for example, in times of crisis, the correlation 
between the indexes becomes more positive). However, as discussed in your 
reading, this finding could be a spurious outcome and driven mainly by 
increased volatility.  
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What matters for us in this module is the possibility of jointly modelling 
asset returns and their volatility. Unit 6 introduces the multivariate GARCH 
models, which are an extension of the univariate GARCH models discussed 
in Unit 5. As you will see in Unit 6, multivariate GARCH models provide us 
with a useful tool to model time-varying autocorrelation. This would allow 
us to identify whether there have been structural breaks in the correlation 
coefficient over time.  

 Reading 1.4 

Please now read Sections 2.4.1 and 2.4.2 of Jondeau, Poon and Rockinger.  

 

1.6.1 Example – Linear dependence between stock market returns 

The data set contains weekly prices for the Dow Jones Industrial Average, the 
Paris blue chip stock market index CAC, and the Frankfurt blue chip stock 
market index DAX, for the period January 2001 to January 2020. Table 1.5 
provides summary statistics of the log weekly return for the three stock market 
indexes. The summary statistics were obtained using the basicStats function (in 
the fBasic package). The Jarque–Bera statistic was obtained using the jarque-
beraTest function, (also in the fBasics package). Skewness and kurtosis were 
obtained using the skewness and kurtosis functions (from the moments pack-
age). As you can see, the DJI exhibits more kurtosis and skewness, compared to 
the CAC and DAX. We reject the null hypothesis of normality for all three 
indexes.  

Table 1.5 Weekly log returns, DJI, CAC and DAX 

 DJI CAC DAX 

Minimum −0.200298 −0.250504 −0.243470 
Maximum 0.106977 0.124321 0.149421 
Mean 0.000980 0.000008 0.000714 
Median 0.002903 0.002589 0.004029 
Stdev 0.022921 0.029033 0.031342 
Skewness −1.069142 −0.973264 −0.708977 
Kurtosis 12.09335 9.89086 8.64527 
Jarque–Bera 3617.706 2125.690 1404.592 

The correlations between the weekly returns for the three indexes are shown 
in Table 1.6. 

Table 1.6 Weekly log returns, correlations 

 DJI CAC DAX 

DJI 1.000000 0.789889 0.787434 
CAC 0.789889 1.000000 0.923835 
DAX 0.787434 0.923835 1.000000 

Jondeau et al (2007) 
Chapter 2, Sections 
2.4.1 and 2.4.2 of 
Financial Modelling 
under Non-Gaussian 
Distributions. 
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R presents these correlations in a matrix form (matrix algebra is the subject of 
the next unit). But for now, notice that elements in the main diagonal all take 
the value of 1, because these measure the correlation of the returns of a 
particular index with itself. The off-diagonal elements measure the sample 
correlation across the various indexes. Interestingly, the correlation matrix 
shows higher correlation between the log weekly returns of the European 
stock indexes, relative to the correlation between each of the Paris and Frank-
furt indexes and the Dow Jones. 

As implied in your reading, it is highly unlikely for the correlation to remain 
constant throughout the entire sample. Thus it is worth estimating the time 
varying correlation. This will be the subject of Unit 6. But just to anticipate 
the discussion of Unit 6, Figures 1.4 and 1.5 show the time varying correla-
tion between  the weekly log return on DJI and CAC, and the weekly log 
return on CAC and DAX, using a six-month rolling window.2  

Figure 1.4 Time-varying correlation between weekly log returns  
of DJI and CAC  

 
It is quite clear that the correlation coefficient exhibits very volatile behav-
iour. The correlation coefficient between the returns on the DJI and CAC 
(Figure 1.4) takes values above 0.9 and below 0.4. The correlation between 
the returns on the CAC and the DAX (Figure 1.5) is in a narrower range, the 
maximum value is just below one, and the lowest value is around 0.75. What 
is important to stress is that the correlation between returns is not constant 
and tends to vary over time. 

 
2  This involves calculating the correlation coefficients for the first six months, and then 

rolling the sample forward by including a new observation and dropping the first obser-
vation from the previous sample. It is an arbitrary method but an easy way to calculate 
the time varying correlation.  
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Figure 1.5 Time-varying correlation between weekly log returns  
for CAC and DAX  

 

1.7 Conclusion 
The main objective of this unit has been to analyse some of the properties of 
financial asset returns. Please check that you have achieved the Learning 
Outcomes listed at the start of the unit. They are repeated here, so that you 
can now test yourself against them. You should now be able to: 

• define and compute the various measures of financial returns, 
including the simple return, gross return, multiperiod returns and 
continuously compounded returns 

• calculate the sample moments of financial returns, including the 
skewness and kurtosis of financial returns 

• explain and discuss some of the stylised statistical properties of asset 
returns 

• analyse and appreciate the issue of time dependency in asset returns 
• analyse the linear dependence across financial assets. 
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1.8 Exercises 

Question 1 

The data used in the Example in Section 1.4.3 is contained in the three text 
files M459_U1_SP500_daily.txt, M459_U1_SP500_weekly.txt and 
M459_U1_SP500_monthly.txt.  

Use the data to replicate the results in Section 1.4.3. 

The index data is for the S&P 500 index (Yahoo! nd accessed February 2020). 

Read data from text file and create zoo object 

For the monthly observations, the following commands read the data and 
create a zoo object for the stock index, assuming the text file is in the current 
working directory (the zoo function is available in the zoo package, Zeileis 
and Grothendieck, 2005). 

M459_U1_SP500_monthly <- 
read.table("M459_U1_SP500_monthly.txt", sep = "\t", header 
= TRUE) 

M459_U1_SP500_monthly_zoo <- 
read.zoo(M459_U1_SP500_monthly, format = "%d/%m/%Y") 

SP500 = zoo(M459_U1_SP500_monthly_zoo) 

The first command reads the data from the text file and creates a data frame. 
The second command creates a zoo object in which the entries are indexed 
by the date of the observations. The third command creates a separate zoo 
object for the monthly SP500 index data, which is easier to manipulate in 
other commands. 

In the read.table command, sep = "\t" indicates the data are separated by 
tabs. Within the read.zoo command, the format for the dates as they appear 
in the data file is specified with format = "%d/%m/%Y". 

Note the use of the quotation symbol " in the R commands. The symbols “ 
and ” will not be recognised in R. 

To see the data for SP500, type SP500 (followed by Enter). 

To see which objects have been created, use 

ls() 

Saving a Workspace 

To save a Workspace, use File | Save Workspace… (or use Control and s). 
Provide a name for the file, which will be saved as an R image with the 
extension .Rdata. The file will be saved in the current working directory (or 
you can browse to another folder).  

To load a Workspace that you have saved previously, use File | Load Work-
space…, and select the file to load. You can browse to another folder if the 
.Rdata file you want to load is not in the current working directory. 
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Deleting an object 

To delete an object, use rm( ). For example, to remove the object SP500 you 
would use rm(SP500). 

To remove all objects (for example, if you want to start with a new data set 
but you would like to keep working with the same loaded packages), go to 
Misc | Remove all objects. The same thing can be achieved with 

rm(list=ls(all=TRUE)) 

Creating a histogram 

To create the histogram of returns use 

hist(diff(log(SP500)),col = "lightblue") 

Summary statistics 

The mean of the logged return for the SP500 index is computed with 

mean(diff(log(SP500))) 

The standard deviation of the logged return is computed with 

sd(diff(log(SP500))) 

The maximum value of the logged return is found with 

max(diff(log(SP500))) 

The minimum value of the logged return is found with 

min(diff(log(SP500))) 

Jarque–Bera test, skewness and kurtosis 

To perform the Jarque–Bera test you will need to use the function jarque-
beraTest( ) in the fBasics package (Wuertz et al, 2017). To calculate skewness 
and kurtosis, please use the functions skewness( ) and kurtosis( ) in the 
moments package (Komsta and Novomestky 2015). The values of skewness 
and kurtosis you will obtain are consistent with the value of the Jarque–Bera 
statistic produced by jarqueberaTest. 

Please do not use the skewness( ) function available in the timeDate package 
(which loads with fBasics), and please do not use the kurtsosis( ) function 
available in the timeDate package. These functions do not produce values of 
skewness and kurtosis consistent with the Jarque–Bera statistic produced by 
jarqueberaTest. 

Also, please do not use the jarque.test( ) function from the moments package; 
jarque.test works on a vector of values, not a zoo object. 

To make sure you use the skewness and kurtosis functions from the mo-
ments package, load the moments package after you have loaded the fBasics 
package. 

The following command performs the Jarque–Bera test using the jarque-
beraTest( ) function in the fBasics package. Note the capital T. 
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jarqueberaTest(diff(log(SP500))) 

To calculate skewness, use the skewness( ) function in the moments package  

skewness(diff(log(SP500))) 

To calculate kurtosis, use the kurtosis( ) function in the moments package 

kurtosis(diff(log(SP500))) 

Daily and weekly data for S&P 500 index 

To work with the daily and weekly data, you can adapt the commands 
above as required. 

Question 2 

Using the monthly data on the S&P 500 index, compute the correlations and 
Ljung–Box Q statistic in Section 1.5.4 Example – Serial correlation of returns. 

Autocorrelation function 

The correlations for up to six lagged values of the monthly return on the 
S&P 500 index can be computed with the following command (and saved in 
dlsp500_acf). The command assumes the Workspace containing the monthly 
SP500 zoo object is open. 

dlsp500_acf <- acf(coredata(diff(log(SP500))), type = 
"correlation", lag.max = 6, plot = FALSE) 

This command applies acf to the logged return, and computes the correla-
tion for the various lags. The type could instead be set to "covariance" or 
"partial". The script suppresses the production of a plot of the autocorrela-
tion function. 

Note that the acf( ) function works with data that is regularly spaced. Much 
financial data has irregular dates. To overcome this we use coredata( ) 
within the acf function; this produces the autocorrelation function for the 
data itself, in sequence but ignoring any gaps in the dates. 

Ljung–Box Q statistic 

The Ljung–Box Q statistic can be computed with the Box.test function (in the 
stats package, which is loaded as part of R) using the following command 

Box.test(coredata(diff(log(SP500))), lag = 1, type = 
"Ljung-Box") 

 Study Note 1.1 

In most applications you will be able to use the Box.test function on a numeric vector, 
univariate time series, or zoo object without any adaption. However, for this particular 
monthly series the command 

Box.test(diff(log(SP500)), lag = 1, type = "Ljung-Box") 

produces NA values.  

Including the coredata( ) specification addresses this issue. The statement 
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Box.test(as.numeric(diff(log(SP500))), lag = 1, type = 
"Ljung-Box") 

also works.  

 

The Ljung–Box Q statistic can be computed for lags 2, 3, 4, 5 and 6 by vary-
ing the ‘lag = ’ specification in the Box.test command. 

Square of monthly returns 

The autocorrelation for up to six lags of the squared monthly log return for 
the S&P 500 index can be computed with 

dlsp500_squared_acf <- acf(coredata(diff(log(SP500))^2), 
type = "correlation", lag.max = 6, plot = FALSE) 

The Ljung–Box Q statistic can be computed for one lag with 

DLSP500 = as.numeric(diff(log(SP500))) 

Box.test(DLSP500^2, lag = 1, type = "Ljung-Box") 

The first command creates a numeric vector containing the logged returns. 
The Ljung–Box Q statistic for lags 2, 3, 4, 5 and 6 can be computed by vary-
ing the ‘lag = ’ specification in the Box.test command. 

Question 3 

Replicate the results in Section 1.6.1 Example – Linear dependence between 
stock market returns. The data for the three stock market indexes is in the 
text file M459_U1_Indexes.txt.  

Reading the data and creating zoo objects 

The following commands read the data from the text file (assuming the text 
file is located in the current working directory), create zoo objects using the 
zoo function (in the zoo package), and create the three weekly log returns. 

M459_U1_Indexes <- read.table("M459_U1_Indexes.txt", 
sep="\t", header = TRUE) 

M459_U1_Indexes_zoo <- read.zoo(M459_U1_Indexes, format = 
"%d/%m/%Y") 

DJI = zoo(M459_U1_Indexes_zoo$DJI) 

CAC = zoo(M459_U1_Indexes_zoo$CAC) 

DAX = zoo(M459_U1_Indexes_zoo$DAX) 

DLDJI = diff(log(DJI)) 

DLCAC = diff(log(CAC)) 

DLDAX = diff(log(DAX)) 

Summary statistics 

The summary statistics for each of the returns could be computed individu-
ally with mean( ), min( ) etc. Alternatively it is possible to combine the three 
series and work on the group as a whole. The following command merges 
the three series 
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returns = merge(DLDJI,DLCAC, DLDAX) 

The following command then produces the list of summary statistics for the 
three series, using the basicStats( ) function in the fBasics package 

returnstats <- basicStats(returns) 

The Jarque–Bera statistic (for the return on the DJI, for example) can be 
obtained with the jarqueberaTest( ) function in the fBasics package  

jarqueberaTest(DLDJI) 

Skewness can be computed with the skewness( ) function in the moments 
package  

skewness(DLDJI) 

To calculate kurtosis, use the kurtosis( ) function in the moments package 

kurtosis(DLDJI) 

The correlation matrix for the three returns can be obtained using the cor( ) 
function applied to the merged series,  

cor(returns) 

Rolling returns 

The rolling correlation can be computed with the roll_corr function in the 
roll package (Foster 2020). 

The first command below creates a zoo object for the rolling correlation for 
the returns on DJI and CAC, using a rolling window of width 26 observa-
tions (corresponding to 26 weeks, or half a year). The command uses the 
date index of the zoo object DLDJI to index the zoo object for the rolling 
correlation.  

The first 26 observations will be lost, so the second command omits any 
missing observations. The final command plots the rolling correlation over 
time. 

roll_DJI_CAC = zoo(roll_cor(DLDJI, DLCAC, width = 26), 
order.by = index(DLDJI)) 

roll_DJI_CAC = na.omit(roll_DJI_CAC) 

plot(roll_DJI_CAC, lwd = 2, ylab = "26-week rolling 
correlation", xlab = "", xaxs = "i") 

The specification xaxs = "i" ensures the plot extends to the edges of the plot 
area. 

The rolling correlation for the weekly log returns on the CAC and the DAX 
can be computed and plotted with 

roll_CAC_DAX = zoo(roll_cor(DLCAC, DLDAX, width = 26), 
order.by = index(DLCAC)) 

roll_CAC_DAX = na.omit(roll_CAC_DAX) 

plot(roll_CAC_DAX, lwd = 2, ylab = "26-week rolling 
correlation", xlab = "", xaxs = "i") 
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Question 4 

The text file M459_U1_OIL_ER.txt contains weekly data on oil prices (Ener-
gy Information Administration) and the trade-weighted exchange rate index 
of the US dollar against the currencies of a broad group of major US trading 
partners (Board of Governors of the Federal Reserve System), from January 
2000 to December 2019. 

a) Calculate the sample mean, standard deviation, Jarque–Bera statistic, 
skewness and kurtosis of weekly log returns, and produce the 
histogram of weekly log returns, for both the oil price and the 
exchange rate. 

b) Compute the correlation coefficient between the weekly log return for 
the oil price and the exchange rate. Comment on the results. 

c) Compute and plot the time varying correlation between the weekly 
log returns for the oil price and the exchange rate using a rolling 26-
week window. Comment on the results. 

Read data and create zoo objects 

The following commands read the data from the text file (assuming the text 
file is located in the current working directory) and create the required zoo 
objects for the oil price, exchange rate, and the two logged returns (using the 
zoo function in the zoo package) 

M459_U1_OIL_ER <- read.table("M459_U1_OIL_ER.txt", sep = 
"\t", header = TRUE) 

M459_U1_OIL_ER_zoo <- read.zoo(M459_U1_OIL_ER, format = 
"%d/%m/%Y") 

OIL = zoo(M459_U1_OIL_ER_zoo$OIL) 

ER = zoo(M459_U1_OIL_ER_zoo$ER) 

DLOIL = diff(log(OIL)) 

DLER = diff(log(ER)) 

Summary statistics and histogram 

The mean of the return on the oil price can be computed with 

mean(DLOIL) 

The standard deviation can be computed with 

sd(DLOIL) 

The Jarque–Bera test can be performed (using the jarqueberaTest function in 
the fBasics package) with 

jarqueberaTest(DLOIL) 

Skewness can be computed using the skewness( ) function (in the moments 
package) with 

skewness(DLOIL) 
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Kurtosis can be computed using the kurtosis( ) function (in the moments 
package) with 

kurtosis(DLOIL) 

The histogram of the logged oil returns can be obtained with 

hist(DLOIL ,col = "lightblue") 

The summary statistics and histogram for the logged return on the exchange 
rate can be obtained by adapting the above commands (replacing DLOIL 
with DLER). 

Correlation matrix 

The correlation between the logged oil returns and logged exchange rate 
returns can be obtained with the following two commands 

returns = merge(DLOIL, DLER) 

cor(returns) 

Rolling correlation coefficient 

The rolling correlation coefficient can be computed and plotted with the 
following commands (using the roll_cor function in the roll package) 

roll_OIL_ER = zoo(roll_cor(DLOIL, DLER, width = 26), 
order.by = index(DLOIL)) 

roll_OIL_ER = na.omit(roll_OIL_ER) 

plot(roll_OIL_ER, lwd = 2, ylab = "26-week rolling 
correlation", xlab = "", xaxs = "i") 

abline (h = 0) 

Question 5 

Go to the website http://uk.finance.yahoo.com and download daily data for 
the FedEx Corporation stock over the years 2004 to 2019. Use the closing price. 

Hint: For the Company or symbol, type ‘FDX’ and for the market, choose 
USA or New York Stock Exchange. Then choose Historical Prices. For 
reference, on 2 January 2004 the closing price was 67.89, on 5 January 2004, 
67.95, and on 30 December 2019, 150.14. 

For this exercise we are asking you to work with the unadjusted closing price 
of FedEx stock. You should be aware that in quantitative analysis it is 
common to use the adjusted prices. The unadjusted prices can make discrete 
jumps, due, say, to stock splits, which are not reflective of the underlying 
behaviour of the return (in a two-for-one stock split the stock price can halve 
in value, for example).  

a) Using an Excel spreadsheet (or similar application) calculate the daily 
log return for the stock.  

b) Using the daily log returns, compute the continuously compounded 
annual return for 2004 to 2019. Plot the annual return on a graph and 
comment on the graph. 

http://uk.finance.yahoo.com/
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1.9 Answers to Exercises 

Question 1 

The results for the empirical moments in relation to the daily, weekly and 
monthly log returns on the S&P 500 index are presented in Section 1.4.3, 
including histograms of returns, skewness, kurtosis and Jarque–Bera test. 

Question 2 

The autocorrelation function, and the Ljung–Box Q statistic, are computed 
for the monthly log returns on the S&P500 index, and the squared returns, in 
Section 1.5.4. 

Question 3 

The results for the weekly log returns on the three stock market indexes, 
being the Dow Jones, CAC and DAX, are presented and discussed in Section 
1.6.1. This includes summary statistics, skewness, kurtosis, Jarque–Bera test 
and the correlation matrix. This section also includes a plot of the rolling 
correlation coefficient between the returns on the DJ index and the CAC 
index, and the rolling correlation coefficient between the CAC index and the 
DAX index. 

Question 4 

This exercise concerns weekly data on oil prices and the US trade-weighted 
exchange rate index. 

a) The sample mean, standard deviation, skewness, kurtosis and Jarque–
Bera statistic are shown for the weekly log exchange rate returns and 
oil returns in Table 1.7. The histogram of the weekly log exchange rate 
returns is displayed in Figure 1.6, and the histogram of weekly log oil 
returns is displayed in Figure 1.7.  

Table 1.7 Weekly log returns, oil price and trade-weighted exchange 
rate 

 Oil price Exchange rate 

Mean 0.000865 0.000114 
Standard deviation 0.040586 0.005777 
Skewness −0.497754 0.236317 
Kurtosis 4.916469 5.480535 
Jarque–Bera 202.4905 276.8436 
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Figure 1.6 Weekly log returns, exchange rate 

 
Like stock returns and commodity returns, exchange rate returns 
exhibit excess kurtosis. The Jarque–Bera test suggests that we can 
strongly reject the null hypothesis of normality. 

Figure 1.7 Weekly log returns, oil price 

 
b) Table 1.8 indicates the correlation between the two series is negative ie 

a depreciation of the US currency against other currencies is associated 
with positive oil returns.  

Table 1.8 Weekly log returns, oil price and exchange rate, correlation 

 Oil return Exchange rate return 

Oil return 1 −0.235314 

Exchange rate return −0.235314 1 
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c) The time varying correlation is shown in Figure 1.8.  

Figure 1.8 Time-varying correlation, weekly log returns, oil price and 
exchange rate  

 
The time varying correlation shows quite clearly that the correlation is 
far from constant. There are periods of time when the degree of 
(negative) correlation increased dramatically, then disappeared, and 
then reappeared again. Given this behaviour, one may wonder 
whether the two series are correlated at all! 

Question 5 

This question concerns daily share prices, daily log returns and annualised 
returns for the FedEx Corporation (FDX).  

a) See the Excel file M459_U1_FDX.xls (1997-2003 compatible) for the 
calculations of the daily log return. (If you have problems 
downloading the data, the tab-delimited text file M459_U1_FDX.txt 
contains the date and daily (unadjusted) closing price for FedEx, 2004–
2019.) 

b) See the Excel file M459_U1_FDX.xls (1997-2003 compatible) for the 
calculation of the annualised continuously compounded return. The 
annualised compounded return shown in Figure 1.9 exhibits a pattern 
of cyclicality.  
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Figure 1.9 Annualised compounded return, FedEx Corporation 

 



Financial Econometrics 

32  University of London 

References 
Board of Governors of the Federal Reserve System, US (nd) Trade Weighted 
U.S. Dollar Index: Broad, Goods (DISCONTINUED) [TWEXB]. [Online]. 
Federal Reserve Bank of St. Louis. Available from: 
https://fred.stlouisfed.org/series/TWEXB [Accessed 27 February 2020] 

Brooks C (2019) Introductory Econometrics for Finance. 4th Edition. 
Cambridge: Cambridge University Press. 

Cont R (2001) ‘Empirical properties of asset returns: stylized facts and 
statistical issues’. Quantitative Finance, 1 (2), 223-36. Available from: 
https://doi.org/10.1080/713665670 

Energy Information Administration (nd) [Online]. Available from: 
http://www.eia.gov [Accessed 27 February 2020] 

Foster J (2020) roll: Rolling Statistics. R package version 1.1.4. Available from: 
https://CRAN.R-project.org/package=roll  

Jondeau E, S Poon and M Rockinger (2007) Financial Modelling under Non-
Gaussian Distributions. London: Springer Finance. 

Komsta L and F Novomestky (2015) moments: Moments, cumulants, skewness, 
kurtosis and related tests. R package version 0.14. Available from: 
https://CRAN.R-project.org/package=moments  

R Core Team (2019) R: A Language and Environment for Statistical Computing. 
[Online]. R Foundation for Statistical Computing. Vienna, Austria. Available 
from: https://www.R-project.org/  

Wuertz D, T Setz and Y Chalabi (2017) fBasics: Rmetrics – Markets and Basic 
Statistics. R package version 3042.89. Available from: https://CRAN.R-
project.org/package=fBasics  

Yahoo! (nd) Finance. [Online]. Available from: http://finance.yahoo.com  
[Accessed 24 February 2020] 

Zeileis A and G Grothendieck (2005) ‘zoo: S3 Infrastructure for Regular and 
Irregular Time Series’. Journal of Statistical Software, 14 (6), 1–27. Available 
from: http://doi.org/10.18637/jss.v014.i06 

https://fred.stlouisfed.org/series/TWEXB
https://doi.org/10.1080/713665670
http://www.eia.gov/
https://cran.r-project.org/package=roll
https://cran.r-project.org/package=moments
https://www.r-project.org/
https://cran.r-project.org/package=fBasics
https://cran.r-project.org/package=fBasics
http://finance.yahoo.com/
http://doi.org/10.18637/jss.v014.i06

	Financial Econometrics
	Contents
	Unit Overview
	Learning outcomes
	 Reading for Unit 1

	1.1 Introduction
	1.2 Calculation of Asset Returns
	1.2.1 Simple returns
	 Review Question 1.1

	1.2.2 Multiperiod returns
	 Review Question 1.2

	1.2.3 Portfolio return
	1.2.4 Log returns
	1.2.5 Multiperiod log returns
	 Review Question 1.3
	Table 1.1 Monthly log return, Barclays Bank, December 2007–December 2008

	1.2.6 Real log returns
	 Review Question 1.4
	Table 1.2 New York Stock Exchange Price Index and CPI, December 2007–December 2008

	1.2.7 Log portfolio return
	 Reading 1.1
	 Optional Reading 1.1


	1.3 Stylised Facts about Financial Returns
	1.4 Distribution of Asset Returns
	1.4.1 Moments of a random variable
	1.4.2 Empirical moments
	1.4.3 Example – Empirical moments
	Figure 1.1 Daily log returns, S&P 500 index
	Figure 1.2 Weekly log returns, S&P 500 index
	Figure 1.3 Monthly log returns, S&P 500 index
	 Reading 1.2


	1.5 Time Dependency
	1.5.1 Serial correlation in returns
	1.5.2 Serial correlation in volatility
	1.5.3 Volatility asymmetry
	 Reading 1.3

	1.5.4 Example – Serial correlation of returns
	Table 1.3 Monthly log returns, S&P 500 index
	Table 1.4 Square of monthly returns, S&P 500 index


	1.6 Linear Dependency across Asset Returns
	 Reading 1.4
	1.6.1 Example – Linear dependence between stock market returns
	Table 1.5 Weekly log returns, DJI, CAC and DAX
	Table 1.6 Weekly log returns, correlations
	Figure 1.4 Time-varying correlation between weekly log returns  of DJI and CAC
	Figure 1.5 Time-varying correlation between weekly log returns  for CAC and DAX


	1.7 Conclusion
	1.8 Exercises
	Question 1
	Read data from text file and create zoo object
	Saving a Workspace
	Deleting an object
	Creating a histogram
	Summary statistics
	Jarque–Bera test, skewness and kurtosis
	Daily and weekly data for S&P 500 index

	Question 2
	Autocorrelation function
	Ljung–Box Q statistic

	( Study Note 1.1
	Reading the data and creating zoo objects
	Summary statistics
	Rolling returns
	Read data and create zoo objects
	Summary statistics and histogram
	Correlation matrix
	Rolling correlation coefficient


	1.9 Answers to Exercises
	Table 1.7 Weekly log returns, oil price and trade-weighted exchange rate
	Figure 1.6 Weekly log returns, exchange rate
	Figure 1.7 Weekly log returns, oil price
	Table 1.8 Weekly log returns, oil price and exchange rate, correlation
	Figure 1.8 Time-varying correlation, weekly log returns, oil price and exchange rate
	Figure 1.9 Annualised compounded return, FedEx Corporation

	References

